Asymptotic estimates of integral functions defined by canonical products
Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 641-648.

Voir la notice de l'article provenant de la source Math-Net.Ru

The principal part of an asymptotic expansion at infinity of the logarithm of integral functions of finite order with simple positive zeros is determined. The asymptotic form is obtained with the aid of a Cauchy-type integral with smooth density.
@article{MZM_1971_10_6_a5,
     author = {P. G. Yurov},
     title = {Asymptotic estimates of integral functions defined by canonical products},
     journal = {Matemati\v{c}eskie zametki},
     pages = {641--648},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a5/}
}
TY  - JOUR
AU  - P. G. Yurov
TI  - Asymptotic estimates of integral functions defined by canonical products
JO  - Matematičeskie zametki
PY  - 1971
SP  - 641
EP  - 648
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a5/
LA  - ru
ID  - MZM_1971_10_6_a5
ER  - 
%0 Journal Article
%A P. G. Yurov
%T Asymptotic estimates of integral functions defined by canonical products
%J Matematičeskie zametki
%D 1971
%P 641-648
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a5/
%G ru
%F MZM_1971_10_6_a5
P. G. Yurov. Asymptotic estimates of integral functions defined by canonical products. Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 641-648. http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a5/