Asymptotic estimates of integral functions defined by canonical products
Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 641-648
Cet article a éte moissonné depuis la source Math-Net.Ru
The principal part of an asymptotic expansion at infinity of the logarithm of integral functions of finite order with simple positive zeros is determined. The asymptotic form is obtained with the aid of a Cauchy-type integral with smooth density.
@article{MZM_1971_10_6_a5,
author = {P. G. Yurov},
title = {Asymptotic estimates of integral functions defined by canonical products},
journal = {Matemati\v{c}eskie zametki},
pages = {641--648},
year = {1971},
volume = {10},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a5/}
}
P. G. Yurov. Asymptotic estimates of integral functions defined by canonical products. Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 641-648. http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a5/