Bases in the spaces $C$ and $L_p$
Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 635-640.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that for any numbers $A$ and $B$, $0$, there exists a basis in the space $C$ consisting of functions $\varphi_k(x)$, $k=1,2,\dots$, whose graphs lie in the strip $0\leqslant x\leqslant1$, $A\leqslant y\leqslant B$. It is shown that for the space $L_p$, $p>1$, there is no analogous “basis in a strip” theorem.
@article{MZM_1971_10_6_a4,
     author = {M. A. Meletidi},
     title = {Bases in the spaces $C$ and $L_p$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {635--640},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a4/}
}
TY  - JOUR
AU  - M. A. Meletidi
TI  - Bases in the spaces $C$ and $L_p$
JO  - Matematičeskie zametki
PY  - 1971
SP  - 635
EP  - 640
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a4/
LA  - ru
ID  - MZM_1971_10_6_a4
ER  - 
%0 Journal Article
%A M. A. Meletidi
%T Bases in the spaces $C$ and $L_p$
%J Matematičeskie zametki
%D 1971
%P 635-640
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a4/
%G ru
%F MZM_1971_10_6_a4
M. A. Meletidi. Bases in the spaces $C$ and $L_p$. Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 635-640. http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a4/