Best one-sided approximation of certain classes of functions
Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 615-626.

Voir la notice de l'article provenant de la source Math-Net.Ru

This considers the question of the best one-sided approximation of certain classes of continuous periodic functions by means of trigonometric polynomials of order $\leqslant n-1$ in the metric $L_{2\pi}^p$ ($1\leqslant p\infty$). Precise upper bounds are obtained for the best one-sided approximation of classes of $2\pi/n$-periodic functions $H_{\omega,n}$ [having arbitrary prescribed modulus of continuity $\omega(t)$] in the metric $L_{2\pi}^p$, as well as of classes of $2\pi$-periodic functions $H_\omega$ [having prescribed modulus of continuity $\omega(t)$ with definite limits] in the metric $L_{2\pi}^1$.
@article{MZM_1971_10_6_a2,
     author = {V. G. Doronin},
     title = {Best one-sided approximation of certain classes of functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {615--626},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a2/}
}
TY  - JOUR
AU  - V. G. Doronin
TI  - Best one-sided approximation of certain classes of functions
JO  - Matematičeskie zametki
PY  - 1971
SP  - 615
EP  - 626
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a2/
LA  - ru
ID  - MZM_1971_10_6_a2
ER  - 
%0 Journal Article
%A V. G. Doronin
%T Best one-sided approximation of certain classes of functions
%J Matematičeskie zametki
%D 1971
%P 615-626
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a2/
%G ru
%F MZM_1971_10_6_a2
V. G. Doronin. Best one-sided approximation of certain classes of functions. Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 615-626. http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a2/