Best one-sided approximation of certain classes of functions
Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 615-626
Voir la notice de l'article provenant de la source Math-Net.Ru
This considers the question of the best one-sided approximation of certain classes of continuous periodic functions by means of trigonometric polynomials of order $\leqslant n-1$ in the metric $L_{2\pi}^p$ ($1\leqslant p\infty$). Precise upper bounds are obtained for the best one-sided approximation of classes of $2\pi/n$-periodic functions $H_{\omega,n}$ [having arbitrary prescribed modulus of continuity $\omega(t)$] in the metric $L_{2\pi}^p$, as well as of classes of $2\pi$-periodic functions $H_\omega$ [having prescribed modulus of continuity $\omega(t)$ with definite limits] in the metric $L_{2\pi}^1$.
@article{MZM_1971_10_6_a2,
author = {V. G. Doronin},
title = {Best one-sided approximation of certain classes of functions},
journal = {Matemati\v{c}eskie zametki},
pages = {615--626},
publisher = {mathdoc},
volume = {10},
number = {6},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a2/}
}
V. G. Doronin. Best one-sided approximation of certain classes of functions. Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 615-626. http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a2/