On a~problem in the theory of nonlinear Fredholm operators
Matematičeskie zametki, Tome 10 (1971) no. 5, pp. 541-549
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that for any Fredholm operator $A(x)$ of class $C^1$ and zero index in a Hilbert space, in a neighborhood of any star compactum $T$ lying in the domain of a we can define a completely continuous and continuously differentiable operator $C$, so that the linear operator $A'(x)+C'(x)$ has a bounded inverse for all $x\in T$.
@article{MZM_1971_10_5_a8,
author = {V. I. Ovchinnikov},
title = {On a~problem in the theory of nonlinear {Fredholm} operators},
journal = {Matemati\v{c}eskie zametki},
pages = {541--549},
publisher = {mathdoc},
volume = {10},
number = {5},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a8/}
}
V. I. Ovchinnikov. On a~problem in the theory of nonlinear Fredholm operators. Matematičeskie zametki, Tome 10 (1971) no. 5, pp. 541-549. http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a8/