On a~problem in the theory of nonlinear Fredholm operators
Matematičeskie zametki, Tome 10 (1971) no. 5, pp. 541-549.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for any Fredholm operator $A(x)$ of class $C^1$ and zero index in a Hilbert space, in a neighborhood of any star compactum $T$ lying in the domain of a we can define a completely continuous and continuously differentiable operator $C$, so that the linear operator $A'(x)+C'(x)$ has a bounded inverse for all $x\in T$.
@article{MZM_1971_10_5_a8,
     author = {V. I. Ovchinnikov},
     title = {On a~problem in the theory of nonlinear {Fredholm} operators},
     journal = {Matemati\v{c}eskie zametki},
     pages = {541--549},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a8/}
}
TY  - JOUR
AU  - V. I. Ovchinnikov
TI  - On a~problem in the theory of nonlinear Fredholm operators
JO  - Matematičeskie zametki
PY  - 1971
SP  - 541
EP  - 549
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a8/
LA  - ru
ID  - MZM_1971_10_5_a8
ER  - 
%0 Journal Article
%A V. I. Ovchinnikov
%T On a~problem in the theory of nonlinear Fredholm operators
%J Matematičeskie zametki
%D 1971
%P 541-549
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a8/
%G ru
%F MZM_1971_10_5_a8
V. I. Ovchinnikov. On a~problem in the theory of nonlinear Fredholm operators. Matematičeskie zametki, Tome 10 (1971) no. 5, pp. 541-549. http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a8/