Equivariant bordisms
Matematičeskie zametki, Tome 10 (1971) no. 5, pp. 519-526.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article investigates the category of manifolds acted upon by a Lie group $G$ in such a way that the orbit of every point is equivariantly diffeomorphic to one of a fixed set $S$ of homogeneous spaces of $G$. The bordism groups ($S$-equivariant bordism groups) are defined in a natural way. These groups are described in detail in the special cases of the quasicomplex action of the groups $U(1)$ and $SU(2)$ on quasicomplex manifolds.
@article{MZM_1971_10_5_a4,
     author = {A. M. Karminskii},
     title = {Equivariant bordisms},
     journal = {Matemati\v{c}eskie zametki},
     pages = {519--526},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a4/}
}
TY  - JOUR
AU  - A. M. Karminskii
TI  - Equivariant bordisms
JO  - Matematičeskie zametki
PY  - 1971
SP  - 519
EP  - 526
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a4/
LA  - ru
ID  - MZM_1971_10_5_a4
ER  - 
%0 Journal Article
%A A. M. Karminskii
%T Equivariant bordisms
%J Matematičeskie zametki
%D 1971
%P 519-526
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a4/
%G ru
%F MZM_1971_10_5_a4
A. M. Karminskii. Equivariant bordisms. Matematičeskie zametki, Tome 10 (1971) no. 5, pp. 519-526. http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a4/