Some bounds in the construction of Bernoulli-normal sequences of signs
Matematičeskie zametki, Tome 10 (1971) no. 5, pp. 501-510
Cet article a éte moissonné depuis la source Math-Net.Ru
For the case of rational probabilities with prime denominators, a Bernoulli-normal sequence of signs is obtained from a normal sequence by way of some changes of signs. An estimate is made of the quantity of fractional parts of the corresponding exponential function which fall in the given interval.
@article{MZM_1971_10_5_a2,
author = {Yu. N. Shakhov},
title = {Some bounds in the construction of {Bernoulli-normal} sequences of signs},
journal = {Matemati\v{c}eskie zametki},
pages = {501--510},
year = {1971},
volume = {10},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a2/}
}
Yu. N. Shakhov. Some bounds in the construction of Bernoulli-normal sequences of signs. Matematičeskie zametki, Tome 10 (1971) no. 5, pp. 501-510. http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a2/