On the exactness of certain inequalities in approximation theory
Matematičeskie zametki, Tome 10 (1971) no. 5, pp. 571-582
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove the following: for every sequence $\{F_\nu\}$, $F_\nu\downarrow0$, $F_\nu>0$ there exists a function $\begin{array}{l} 1)~E_n(f)\leqslant F_n\quad(n=0,1,2,\dots) \text{ и }\\ 2)~A_kn^{-k}\sum_{\nu=1}^n\nu^{k-1}F_{\nu-1}\leqslant\omega_k(f,n^{-1})\quad(n=1,2,\dots). \end{array}$
@article{MZM_1971_10_5_a12,
author = {V. \`E. Gheit},
title = {On the exactness of certain inequalities in approximation theory},
journal = {Matemati\v{c}eskie zametki},
pages = {571--582},
year = {1971},
volume = {10},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a12/}
}
V. È. Gheit. On the exactness of certain inequalities in approximation theory. Matematičeskie zametki, Tome 10 (1971) no. 5, pp. 571-582. http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a12/