On the exactness of certain inequalities in approximation theory
Matematičeskie zametki, Tome 10 (1971) no. 5, pp. 571-582.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the following: for every sequence $\{F_\nu\}$, $F_\nu\downarrow0$, $F_\nu>0$ there exists a function $\begin{array}{l} 1)~E_n(f)\leqslant F_n\quad(n=0,1,2,\dots) \text{ и }\\ 2)~A_kn^{-k}\sum_{\nu=1}^n\nu^{k-1}F_{\nu-1}\leqslant\omega_k(f,n^{-1})\quad(n=1,2,\dots). \end{array}$
@article{MZM_1971_10_5_a12,
     author = {V. \`E. Gheit},
     title = {On the exactness of certain inequalities in approximation theory},
     journal = {Matemati\v{c}eskie zametki},
     pages = {571--582},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a12/}
}
TY  - JOUR
AU  - V. È. Gheit
TI  - On the exactness of certain inequalities in approximation theory
JO  - Matematičeskie zametki
PY  - 1971
SP  - 571
EP  - 582
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a12/
LA  - ru
ID  - MZM_1971_10_5_a12
ER  - 
%0 Journal Article
%A V. È. Gheit
%T On the exactness of certain inequalities in approximation theory
%J Matematičeskie zametki
%D 1971
%P 571-582
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a12/
%G ru
%F MZM_1971_10_5_a12
V. È. Gheit. On the exactness of certain inequalities in approximation theory. Matematičeskie zametki, Tome 10 (1971) no. 5, pp. 571-582. http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a12/