Diameters of classes of continuous functions in the $L_p$ space
Matematičeskie zametki, Tome 10 (1971) no. 5, pp. 493-500
Voir la notice de l'article provenant de la source Math-Net.Ru
In the $L_p(a,b)$ space the exact values of $n$-diameters $(n=1,2,\dots)$ are found of the class $H_\omega[a,b]$ of the functions $f(x)$ such that $|f(x')-f(x'')|\leqslant\omega(|x'-x''|)$, where $\omega(t)$ is a given continuity module which is convex upwards.
@article{MZM_1971_10_5_a1,
author = {N. P. Korneichuk},
title = {Diameters of classes of continuous functions in the $L_p$ space},
journal = {Matemati\v{c}eskie zametki},
pages = {493--500},
publisher = {mathdoc},
volume = {10},
number = {5},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a1/}
}
N. P. Korneichuk. Diameters of classes of continuous functions in the $L_p$ space. Matematičeskie zametki, Tome 10 (1971) no. 5, pp. 493-500. http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a1/