Some functionals over a compact Minkovskii space
Matematičeskie zametki, Tome 10 (1971) no. 4, pp. 453-457
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we obtain estimates which are order-exact for the projection and Macphail constants of an arbitrary $n$-dimensional Banach space: $1\leqslant\lambda(X)\leqslant\sqrt{n}$, $1/n\leqslant\mu_1(X)\leqslant1/\sqrt{n}$.
@article{MZM_1971_10_4_a9,
author = {M. I. Kadets and M. G. Snobar},
title = {Some functionals over a compact {Minkovskii} space},
journal = {Matemati\v{c}eskie zametki},
pages = {453--457},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a9/}
}
M. I. Kadets; M. G. Snobar. Some functionals over a compact Minkovskii space. Matematičeskie zametki, Tome 10 (1971) no. 4, pp. 453-457. http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a9/