Some functionals over a compact Minkovskii space
Matematičeskie zametki, Tome 10 (1971) no. 4, pp. 453-457.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain estimates which are order-exact for the projection and Macphail constants of an arbitrary $n$-dimensional Banach space: $1\leqslant\lambda(X)\leqslant\sqrt{n}$, $1/n\leqslant\mu_1(X)\leqslant1/\sqrt{n}$.
@article{MZM_1971_10_4_a9,
     author = {M. I. Kadets and M. G. Snobar},
     title = {Some functionals over a compact {Minkovskii} space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {453--457},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a9/}
}
TY  - JOUR
AU  - M. I. Kadets
AU  - M. G. Snobar
TI  - Some functionals over a compact Minkovskii space
JO  - Matematičeskie zametki
PY  - 1971
SP  - 453
EP  - 457
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a9/
LA  - ru
ID  - MZM_1971_10_4_a9
ER  - 
%0 Journal Article
%A M. I. Kadets
%A M. G. Snobar
%T Some functionals over a compact Minkovskii space
%J Matematičeskie zametki
%D 1971
%P 453-457
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a9/
%G ru
%F MZM_1971_10_4_a9
M. I. Kadets; M. G. Snobar. Some functionals over a compact Minkovskii space. Matematičeskie zametki, Tome 10 (1971) no. 4, pp. 453-457. http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a9/