Finite groups with $2$-closed or $2'$-closed centralizers of involutions
Matematičeskie zametki, Tome 10 (1971) no. 4, pp. 437-446.

Voir la notice de l'article provenant de la source Math-Net.Ru

Finite nonsolvable groups are described whose involution centralizers are $2$-closed or $2'$-closed, whereas the Sylow $p$-subgroups for $p>2$ are cyclic.
@article{MZM_1971_10_4_a7,
     author = {V. M. Sitnikov},
     title = {Finite groups with $2$-closed or $2'$-closed centralizers of involutions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {437--446},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a7/}
}
TY  - JOUR
AU  - V. M. Sitnikov
TI  - Finite groups with $2$-closed or $2'$-closed centralizers of involutions
JO  - Matematičeskie zametki
PY  - 1971
SP  - 437
EP  - 446
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a7/
LA  - ru
ID  - MZM_1971_10_4_a7
ER  - 
%0 Journal Article
%A V. M. Sitnikov
%T Finite groups with $2$-closed or $2'$-closed centralizers of involutions
%J Matematičeskie zametki
%D 1971
%P 437-446
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a7/
%G ru
%F MZM_1971_10_4_a7
V. M. Sitnikov. Finite groups with $2$-closed or $2'$-closed centralizers of involutions. Matematičeskie zametki, Tome 10 (1971) no. 4, pp. 437-446. http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a7/