Finite groups with $2$-closed or $2'$-closed centralizers of involutions
Matematičeskie zametki, Tome 10 (1971) no. 4, pp. 437-446
Cet article a éte moissonné depuis la source Math-Net.Ru
Finite nonsolvable groups are described whose involution centralizers are $2$-closed or $2'$-closed, whereas the Sylow $p$-subgroups for $p>2$ are cyclic.
@article{MZM_1971_10_4_a7,
author = {V. M. Sitnikov},
title = {Finite groups with $2$-closed or $2'$-closed centralizers of involutions},
journal = {Matemati\v{c}eskie zametki},
pages = {437--446},
year = {1971},
volume = {10},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a7/}
}
V. M. Sitnikov. Finite groups with $2$-closed or $2'$-closed centralizers of involutions. Matematičeskie zametki, Tome 10 (1971) no. 4, pp. 437-446. http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a7/