Elliptic curves $x^3+y^3=D$
Matematičeskie zametki, Tome 10 (1971) no. 4, pp. 407-414
Cet article a éte moissonné depuis la source Math-Net.Ru
Equality of distributions is shown of even and odd values of the order of the zero at the point $s=1$ of $L$-functions of elliptic curves $x^3+y^3=D$, where $D$ is a positive integer not divisible by a cube.
@article{MZM_1971_10_4_a4,
author = {A. G. Kisun'ko},
title = {Elliptic curves $x^3+y^3=D$},
journal = {Matemati\v{c}eskie zametki},
pages = {407--414},
year = {1971},
volume = {10},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a4/}
}
A. G. Kisun'ko. Elliptic curves $x^3+y^3=D$. Matematičeskie zametki, Tome 10 (1971) no. 4, pp. 407-414. http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a4/