Elliptic curves $x^3+y^3=D$
Matematičeskie zametki, Tome 10 (1971) no. 4, pp. 407-414.

Voir la notice de l'article provenant de la source Math-Net.Ru

Equality of distributions is shown of even and odd values of the order of the zero at the point $s=1$ of $L$-functions of elliptic curves $x^3+y^3=D$, where $D$ is a positive integer not divisible by a cube.
@article{MZM_1971_10_4_a4,
     author = {A. G. Kisun'ko},
     title = {Elliptic curves $x^3+y^3=D$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {407--414},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a4/}
}
TY  - JOUR
AU  - A. G. Kisun'ko
TI  - Elliptic curves $x^3+y^3=D$
JO  - Matematičeskie zametki
PY  - 1971
SP  - 407
EP  - 414
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a4/
LA  - ru
ID  - MZM_1971_10_4_a4
ER  - 
%0 Journal Article
%A A. G. Kisun'ko
%T Elliptic curves $x^3+y^3=D$
%J Matematičeskie zametki
%D 1971
%P 407-414
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a4/
%G ru
%F MZM_1971_10_4_a4
A. G. Kisun'ko. Elliptic curves $x^3+y^3=D$. Matematičeskie zametki, Tome 10 (1971) no. 4, pp. 407-414. http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a4/