Interdependence of a theorem of Koebe and a theorem of Caratheodory
Matematičeskie zametki, Tome 10 (1971) no. 4, pp. 399-406
Cet article a éte moissonné depuis la source Math-Net.Ru
We determine the widest class of topological mappings for which a correspondence of boundaries is describable in terms of prime ends in the sense of Caratheodory. Relying on a concept of relative distance, we explain why the class so determined is the widest possible, and using a characteristic property of mappings of this class we prove a generalized theorem of Koebe on correspondence of accessible points and we establish its logical equivalence to a fundamental theorem of the Caratheodory theory.
@article{MZM_1971_10_4_a3,
author = {V. A. Zorich},
title = {Interdependence of a theorem of {Koebe} and a theorem of {Caratheodory}},
journal = {Matemati\v{c}eskie zametki},
pages = {399--406},
year = {1971},
volume = {10},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a3/}
}
V. A. Zorich. Interdependence of a theorem of Koebe and a theorem of Caratheodory. Matematičeskie zametki, Tome 10 (1971) no. 4, pp. 399-406. http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a3/