Interdependence of a theorem of Koebe and a theorem of Caratheodory
Matematičeskie zametki, Tome 10 (1971) no. 4, pp. 399-406.

Voir la notice de l'article provenant de la source Math-Net.Ru

We determine the widest class of topological mappings for which a correspondence of boundaries is describable in terms of prime ends in the sense of Caratheodory. Relying on a concept of relative distance, we explain why the class so determined is the widest possible, and using a characteristic property of mappings of this class we prove a generalized theorem of Koebe on correspondence of accessible points and we establish its logical equivalence to a fundamental theorem of the Caratheodory theory.
@article{MZM_1971_10_4_a3,
     author = {V. A. Zorich},
     title = {Interdependence of a theorem of {Koebe} and a theorem of {Caratheodory}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {399--406},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a3/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - Interdependence of a theorem of Koebe and a theorem of Caratheodory
JO  - Matematičeskie zametki
PY  - 1971
SP  - 399
EP  - 406
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a3/
LA  - ru
ID  - MZM_1971_10_4_a3
ER  - 
%0 Journal Article
%A V. A. Zorich
%T Interdependence of a theorem of Koebe and a theorem of Caratheodory
%J Matematičeskie zametki
%D 1971
%P 399-406
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a3/
%G ru
%F MZM_1971_10_4_a3
V. A. Zorich. Interdependence of a theorem of Koebe and a theorem of Caratheodory. Matematičeskie zametki, Tome 10 (1971) no. 4, pp. 399-406. http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a3/