An example of a function which is Denjoy integrable but not Khinchin summable
Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 295-300
Voir la notice de l'article provenant de la source Math-Net.Ru
The following result is proven: if $\xi$ is irrational number “anomalously badly” approximable by rationals, then there are functions which are not Khinchin $\xi$-summable but which are Denjoy integrable.
@article{MZM_1971_10_3_a6,
author = {V. S. Shul'man},
title = {An example of a function which is {Denjoy} integrable but not {Khinchin} summable},
journal = {Matemati\v{c}eskie zametki},
pages = {295--300},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a6/}
}
V. S. Shul'man. An example of a function which is Denjoy integrable but not Khinchin summable. Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 295-300. http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a6/