An example of a function which is Denjoy integrable but not Khinchin summable
Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 295-300.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following result is proven: if $\xi$ is irrational number “anomalously badly” approximable by rationals, then there are functions which are not Khinchin $\xi$-summable but which are Denjoy integrable.
@article{MZM_1971_10_3_a6,
     author = {V. S. Shul'man},
     title = {An example of a function which is {Denjoy} integrable but not {Khinchin} summable},
     journal = {Matemati\v{c}eskie zametki},
     pages = {295--300},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a6/}
}
TY  - JOUR
AU  - V. S. Shul'man
TI  - An example of a function which is Denjoy integrable but not Khinchin summable
JO  - Matematičeskie zametki
PY  - 1971
SP  - 295
EP  - 300
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a6/
LA  - ru
ID  - MZM_1971_10_3_a6
ER  - 
%0 Journal Article
%A V. S. Shul'man
%T An example of a function which is Denjoy integrable but not Khinchin summable
%J Matematičeskie zametki
%D 1971
%P 295-300
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a6/
%G ru
%F MZM_1971_10_3_a6
V. S. Shul'man. An example of a function which is Denjoy integrable but not Khinchin summable. Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 295-300. http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a6/