A geometric property of functions starlike of order $\alpha$
Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 287-293
Cet article a éte moissonné depuis la source Math-Net.Ru
We determined the maximum radius $\delta_\alpha(r)$ of the disk $\Omega_r$, possessing the property that every function $f(z)$, starlike of order $\alpha$, is starlike in $|z| with respect to any point of $\Omega_r$. The problem is reduced to that of finding the minimum of a certain functional for which extremal function is determined.
@article{MZM_1971_10_3_a5,
author = {D. V. Prokhorov},
title = {A geometric property of functions starlike of order~$\alpha$},
journal = {Matemati\v{c}eskie zametki},
pages = {287--293},
year = {1971},
volume = {10},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a5/}
}
D. V. Prokhorov. A geometric property of functions starlike of order $\alpha$. Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 287-293. http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a5/