A geometric property of functions starlike of order~$\alpha$
Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 287-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

We determined the maximum radius $\delta_\alpha(r)$ of the disk $\Omega_r$, possessing the property that every function $f(z)$, starlike of order $\alpha$, is starlike in $|z|$ with respect to any point of $\Omega_r$. The problem is reduced to that of finding the minimum of a certain functional for which extremal function is determined.
@article{MZM_1971_10_3_a5,
     author = {D. V. Prokhorov},
     title = {A geometric property of functions starlike of order~$\alpha$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {287--293},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a5/}
}
TY  - JOUR
AU  - D. V. Prokhorov
TI  - A geometric property of functions starlike of order~$\alpha$
JO  - Matematičeskie zametki
PY  - 1971
SP  - 287
EP  - 293
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a5/
LA  - ru
ID  - MZM_1971_10_3_a5
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%T A geometric property of functions starlike of order~$\alpha$
%J Matematičeskie zametki
%D 1971
%P 287-293
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a5/
%G ru
%F MZM_1971_10_3_a5
D. V. Prokhorov. A geometric property of functions starlike of order~$\alpha$. Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 287-293. http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a5/