Hilbert's boundary-value problem (with coefficients from the Wiener ring) for matrix-valued functions analytic in the unit disk
Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 279-286.

Voir la notice de l'article provenant de la source Math-Net.Ru

Hilbert's boundary-value problem is stated and solved for matrix-valued functions, analytic in the unit disk, under the condition that the coefficients and the free term belong to the Wiener ring $(\mathfrak{R}_{(n\times n)})$. Left standard factorization of the coefficient $\mathfrak{U}(t)$ leads to the determination of the number of linearly independent solutions of the homogeneous problem and the number and type of conditions under which the inhomogeneous problem is solvable.
@article{MZM_1971_10_3_a4,
     author = {A. L. Lukov},
     title = {Hilbert's boundary-value problem (with coefficients from the {Wiener} ring) for matrix-valued functions analytic in the unit disk},
     journal = {Matemati\v{c}eskie zametki},
     pages = {279--286},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a4/}
}
TY  - JOUR
AU  - A. L. Lukov
TI  - Hilbert's boundary-value problem (with coefficients from the Wiener ring) for matrix-valued functions analytic in the unit disk
JO  - Matematičeskie zametki
PY  - 1971
SP  - 279
EP  - 286
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a4/
LA  - ru
ID  - MZM_1971_10_3_a4
ER  - 
%0 Journal Article
%A A. L. Lukov
%T Hilbert's boundary-value problem (with coefficients from the Wiener ring) for matrix-valued functions analytic in the unit disk
%J Matematičeskie zametki
%D 1971
%P 279-286
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a4/
%G ru
%F MZM_1971_10_3_a4
A. L. Lukov. Hilbert's boundary-value problem (with coefficients from the Wiener ring) for matrix-valued functions analytic in the unit disk. Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 279-286. http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a4/