Hilbert's boundary-value problem (with coefficients from the Wiener ring) for matrix-valued functions analytic in the unit disk
Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 279-286
Cet article a éte moissonné depuis la source Math-Net.Ru
Hilbert's boundary-value problem is stated and solved for matrix-valued functions, analytic in the unit disk, under the condition that the coefficients and the free term belong to the Wiener ring $(\mathfrak{R}_{(n\times n)})$. Left standard factorization of the coefficient $\mathfrak{U}(t)$ leads to the determination of the number of linearly independent solutions of the homogeneous problem and the number and type of conditions under which the inhomogeneous problem is solvable.
@article{MZM_1971_10_3_a4,
author = {A. L. Lukov},
title = {Hilbert's boundary-value problem (with coefficients from the {Wiener} ring) for matrix-valued functions analytic in the unit disk},
journal = {Matemati\v{c}eskie zametki},
pages = {279--286},
year = {1971},
volume = {10},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a4/}
}
TY - JOUR AU - A. L. Lukov TI - Hilbert's boundary-value problem (with coefficients from the Wiener ring) for matrix-valued functions analytic in the unit disk JO - Matematičeskie zametki PY - 1971 SP - 279 EP - 286 VL - 10 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a4/ LA - ru ID - MZM_1971_10_3_a4 ER -
A. L. Lukov. Hilbert's boundary-value problem (with coefficients from the Wiener ring) for matrix-valued functions analytic in the unit disk. Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 279-286. http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a4/