Generalization of the problem of the number of partitions of a finite set
Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 361-367.

Voir la notice de l'article provenant de la source Math-Net.Ru

A unified scheme is proposed for obtaining the generating functions for combinatorial objects defined on partitions of finite sets.
@article{MZM_1971_10_3_a14,
     author = {B. I. Selivanov},
     title = {Generalization of the problem of the number of partitions of a finite set},
     journal = {Matemati\v{c}eskie zametki},
     pages = {361--367},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a14/}
}
TY  - JOUR
AU  - B. I. Selivanov
TI  - Generalization of the problem of the number of partitions of a finite set
JO  - Matematičeskie zametki
PY  - 1971
SP  - 361
EP  - 367
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a14/
LA  - ru
ID  - MZM_1971_10_3_a14
ER  - 
%0 Journal Article
%A B. I. Selivanov
%T Generalization of the problem of the number of partitions of a finite set
%J Matematičeskie zametki
%D 1971
%P 361-367
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a14/
%G ru
%F MZM_1971_10_3_a14
B. I. Selivanov. Generalization of the problem of the number of partitions of a finite set. Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 361-367. http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a14/