An optimal problem in graph theory
Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 355-359.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following problem is solved: determine a point on a tree having the property that the sum of the products of the intensities of its vertices by the corresponding distances to that point is a minimum. The proposed algorithm is reduced to the stepwise application to the tree of truncation of its vertices. A feasible interpretation of the problem is given.
@article{MZM_1971_10_3_a13,
     author = {M. A. Dukhovnyi},
     title = {An optimal problem in graph theory},
     journal = {Matemati\v{c}eskie zametki},
     pages = {355--359},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a13/}
}
TY  - JOUR
AU  - M. A. Dukhovnyi
TI  - An optimal problem in graph theory
JO  - Matematičeskie zametki
PY  - 1971
SP  - 355
EP  - 359
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a13/
LA  - ru
ID  - MZM_1971_10_3_a13
ER  - 
%0 Journal Article
%A M. A. Dukhovnyi
%T An optimal problem in graph theory
%J Matematičeskie zametki
%D 1971
%P 355-359
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a13/
%G ru
%F MZM_1971_10_3_a13
M. A. Dukhovnyi. An optimal problem in graph theory. Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 355-359. http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a13/