Nonrigidity of certain composite surfaces of revolution
Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 333-344.

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonrigidity of the composite surfaces of revolution $\Sigma=S_1+S_2+S_3$ is analyzed, where $S_1$ and $S_2$ are internally glued and $S_2$ and $S_3$ are externally glued together. It is shown that cases of rigidity as well as nonrigidity can obtain for surfaces of this type.
@article{MZM_1971_10_3_a11,
     author = {I. Ivanova-Karatopraklieva},
     title = {Nonrigidity of certain composite surfaces of revolution},
     journal = {Matemati\v{c}eskie zametki},
     pages = {333--344},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a11/}
}
TY  - JOUR
AU  - I. Ivanova-Karatopraklieva
TI  - Nonrigidity of certain composite surfaces of revolution
JO  - Matematičeskie zametki
PY  - 1971
SP  - 333
EP  - 344
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a11/
LA  - ru
ID  - MZM_1971_10_3_a11
ER  - 
%0 Journal Article
%A I. Ivanova-Karatopraklieva
%T Nonrigidity of certain composite surfaces of revolution
%J Matematičeskie zametki
%D 1971
%P 333-344
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a11/
%G ru
%F MZM_1971_10_3_a11
I. Ivanova-Karatopraklieva. Nonrigidity of certain composite surfaces of revolution. Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 333-344. http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a11/