Isometric immersions of a Euclidean plane in Lobachevskii space
Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 327-332
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that any regular isometric immersion of a Euclidean plane in (three-dimensional) Lobachevskii space is either a homeomorphism onto an orisphere or a covering of the surface formed by the rotation of an equidistant about its base.
@article{MZM_1971_10_3_a10,
author = {Yu. A. Volkov and S. M. Vladimirova},
title = {Isometric immersions of a {Euclidean} plane in {Lobachevskii} space},
journal = {Matemati\v{c}eskie zametki},
pages = {327--332},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a10/}
}
Yu. A. Volkov; S. M. Vladimirova. Isometric immersions of a Euclidean plane in Lobachevskii space. Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 327-332. http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a10/