A counterexample to the Hasse principle for a system of two quadratic forms in five variables
Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 253-257
Cet article a éte moissonné depuis la source Math-Net.Ru
A system of two quadratic forms in five variables with integer coefficients is constructed, which is equal to zero in the field of real numbers and in all $p$-adic fields, but is not zero in the field of rationals.
@article{MZM_1971_10_3_a1,
author = {V. A. Iskovskikh},
title = {A counterexample to the {Hasse} principle for a system of two quadratic forms in five variables},
journal = {Matemati\v{c}eskie zametki},
pages = {253--257},
year = {1971},
volume = {10},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a1/}
}
V. A. Iskovskikh. A counterexample to the Hasse principle for a system of two quadratic forms in five variables. Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 253-257. http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a1/