A counterexample to the Hasse principle for a system of two quadratic forms in five variables
Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 253-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of two quadratic forms in five variables with integer coefficients is constructed, which is equal to zero in the field of real numbers and in all $p$-adic fields, but is not zero in the field of rationals.
@article{MZM_1971_10_3_a1,
     author = {V. A. Iskovskikh},
     title = {A counterexample to the {Hasse} principle for a system of two quadratic forms in five variables},
     journal = {Matemati\v{c}eskie zametki},
     pages = {253--257},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a1/}
}
TY  - JOUR
AU  - V. A. Iskovskikh
TI  - A counterexample to the Hasse principle for a system of two quadratic forms in five variables
JO  - Matematičeskie zametki
PY  - 1971
SP  - 253
EP  - 257
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a1/
LA  - ru
ID  - MZM_1971_10_3_a1
ER  - 
%0 Journal Article
%A V. A. Iskovskikh
%T A counterexample to the Hasse principle for a system of two quadratic forms in five variables
%J Matematičeskie zametki
%D 1971
%P 253-257
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a1/
%G ru
%F MZM_1971_10_3_a1
V. A. Iskovskikh. A counterexample to the Hasse principle for a system of two quadratic forms in five variables. Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 253-257. http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a1/