$n$-Dimensional compact complex analytic manifolds having $n-1$ algebraically independent meromorphic functions
Matematičeskie zametki, Tome 10 (1971) no. 2, pp. 145-149
Voir la notice de l'article provenant de la source Math-Net.Ru
Manifolds of the type indicated in the title have been investigated for $n=2$ by Kodaira, whose methods were adopted by Kawai in application to the case $n=3$. In the present note we use the same methods to investigate the general case. We deduce a bimeromorphic classification of the manifolds in question. Their complete description can be obtained on the basis of certain results of Hironaka.
@article{MZM_1971_10_2_a3,
author = {Zh. Goligo},
title = {$n${-Dimensional} compact complex analytic manifolds having $n-1$ algebraically independent meromorphic functions},
journal = {Matemati\v{c}eskie zametki},
pages = {145--149},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_2_a3/}
}
TY - JOUR AU - Zh. Goligo TI - $n$-Dimensional compact complex analytic manifolds having $n-1$ algebraically independent meromorphic functions JO - Matematičeskie zametki PY - 1971 SP - 145 EP - 149 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1971_10_2_a3/ LA - ru ID - MZM_1971_10_2_a3 ER -
Zh. Goligo. $n$-Dimensional compact complex analytic manifolds having $n-1$ algebraically independent meromorphic functions. Matematičeskie zametki, Tome 10 (1971) no. 2, pp. 145-149. http://geodesic.mathdoc.fr/item/MZM_1971_10_2_a3/