Infinitesimal first- and second-order deformations of ribbed surfaces of revolution, preserving the normal curvature or geodesic torsion of the boundary parallel
Matematičeskie zametki, Tome 10 (1971) no. 2, pp. 135-144
Voir la notice de l'article provenant de la source Math-Net.Ru
Infinitesimal deformations of ribbed surfaces of revolution $S_n$ with preservation of the normal curvature $(A)$ or geodesic torsion $(B)$ of the boundary parallel are investigated. The following are proved: a convex surface $S_n$ is rigid under deformations $(A)$ and $(B)$; there are nonconvex surfaces $S_n$ that are nonrigid under deformations $(A)$ and $(B)$; any surface $S_n$ has second-order rigidity under deformations $(A)$; a surface $S_n$ that is nonrigid under these deformations.
@article{MZM_1971_10_2_a2,
author = {N. G. Perlova},
title = {Infinitesimal first- and second-order deformations of ribbed surfaces of revolution, preserving the normal curvature or geodesic torsion of the boundary parallel},
journal = {Matemati\v{c}eskie zametki},
pages = {135--144},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_2_a2/}
}
TY - JOUR AU - N. G. Perlova TI - Infinitesimal first- and second-order deformations of ribbed surfaces of revolution, preserving the normal curvature or geodesic torsion of the boundary parallel JO - Matematičeskie zametki PY - 1971 SP - 135 EP - 144 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1971_10_2_a2/ LA - ru ID - MZM_1971_10_2_a2 ER -
%0 Journal Article %A N. G. Perlova %T Infinitesimal first- and second-order deformations of ribbed surfaces of revolution, preserving the normal curvature or geodesic torsion of the boundary parallel %J Matematičeskie zametki %D 1971 %P 135-144 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1971_10_2_a2/ %G ru %F MZM_1971_10_2_a2
N. G. Perlova. Infinitesimal first- and second-order deformations of ribbed surfaces of revolution, preserving the normal curvature or geodesic torsion of the boundary parallel. Matematičeskie zametki, Tome 10 (1971) no. 2, pp. 135-144. http://geodesic.mathdoc.fr/item/MZM_1971_10_2_a2/