Formula for the differentiation of operator-valued functions depending on a parameter
Matematičeskie zametki, Tome 10 (1971) no. 2, pp. 207-218
Cet article a éte moissonné depuis la source Math-Net.Ru
A study of the convergence of the differentiation formula $$ (f(A))'=f'(A)A'+\frac{f''(A)}{2!}[A'A]+\frac{f'''(A)}{3!}[[A'A]A]+\dots, $$ where $[XY]=XY-YX$, and $A=A(t)$ is a function of the real variable $t$ with values in a Banach algebra.
@article{MZM_1971_10_2_a10,
author = {V. I. Burenkov},
title = {Formula for the differentiation of operator-valued functions depending on a parameter},
journal = {Matemati\v{c}eskie zametki},
pages = {207--218},
year = {1971},
volume = {10},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_2_a10/}
}
V. I. Burenkov. Formula for the differentiation of operator-valued functions depending on a parameter. Matematičeskie zametki, Tome 10 (1971) no. 2, pp. 207-218. http://geodesic.mathdoc.fr/item/MZM_1971_10_2_a10/