Formula for the differentiation of operator-valued functions depending on a parameter
Matematičeskie zametki, Tome 10 (1971) no. 2, pp. 207-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

A study of the convergence of the differentiation formula $$ (f(A))'=f'(A)A'+\frac{f''(A)}{2!}[A'A]+\frac{f'''(A)}{3!}[[A'A]A]+\dots, $$ where $[XY]=XY-YX$, and $A=A(t)$ is a function of the real variable $t$ with values in a Banach algebra.
@article{MZM_1971_10_2_a10,
     author = {V. I. Burenkov},
     title = {Formula for the differentiation of operator-valued functions depending on a parameter},
     journal = {Matemati\v{c}eskie zametki},
     pages = {207--218},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_2_a10/}
}
TY  - JOUR
AU  - V. I. Burenkov
TI  - Formula for the differentiation of operator-valued functions depending on a parameter
JO  - Matematičeskie zametki
PY  - 1971
SP  - 207
EP  - 218
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_2_a10/
LA  - ru
ID  - MZM_1971_10_2_a10
ER  - 
%0 Journal Article
%A V. I. Burenkov
%T Formula for the differentiation of operator-valued functions depending on a parameter
%J Matematičeskie zametki
%D 1971
%P 207-218
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_2_a10/
%G ru
%F MZM_1971_10_2_a10
V. I. Burenkov. Formula for the differentiation of operator-valued functions depending on a parameter. Matematičeskie zametki, Tome 10 (1971) no. 2, pp. 207-218. http://geodesic.mathdoc.fr/item/MZM_1971_10_2_a10/