Theorem concerning analytic continuation
Matematičeskie zametki, Tome 10 (1971) no. 1, pp. 57-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

A. I. Markushevich obtained the following representation of a function in its holomorphicity star with a sequence $\{m_\nu\}$, for which $m_{\nu+1}/m_\nu\to\infty$: $$f(z)=\lim\limits_{\nu\to\infty}\left\{\sum_0^{m_{2\nu}}\theta_k\frac{f^{(k)}(z_0)}{k!}(z-z_0)^k+\sum_0^{m_{2\nu-1}}(1-\theta_k)\frac{f^{(k)}(z_0)}{k!}(z-z_0)^k\right\}$$. Here it is proved that this condition is necessary; more precisely, $\overline{\lim\limits_{\nu\to\infty}}\frac{m_{\nu+1}}{m_\nu}=\infty$ . This result is derived from certain properties of over-convergent power series.
@article{MZM_1971_10_1_a7,
     author = {A. M. Lukatskii},
     title = {Theorem concerning analytic continuation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {57--62},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a7/}
}
TY  - JOUR
AU  - A. M. Lukatskii
TI  - Theorem concerning analytic continuation
JO  - Matematičeskie zametki
PY  - 1971
SP  - 57
EP  - 62
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a7/
LA  - ru
ID  - MZM_1971_10_1_a7
ER  - 
%0 Journal Article
%A A. M. Lukatskii
%T Theorem concerning analytic continuation
%J Matematičeskie zametki
%D 1971
%P 57-62
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a7/
%G ru
%F MZM_1971_10_1_a7
A. M. Lukatskii. Theorem concerning analytic continuation. Matematičeskie zametki, Tome 10 (1971) no. 1, pp. 57-62. http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a7/