Theorem concerning analytic continuation
Matematičeskie zametki, Tome 10 (1971) no. 1, pp. 57-62
Cet article a éte moissonné depuis la source Math-Net.Ru
A. I. Markushevich obtained the following representation of a function in its holomorphicity star with a sequence $\{m_\nu\}$, for which $m_{\nu+1}/m_\nu\to\infty$: $$f(z)=\lim\limits_{\nu\to\infty}\left\{\sum_0^{m_{2\nu}}\theta_k\frac{f^{(k)}(z_0)}{k!}(z-z_0)^k+\sum_0^{m_{2\nu-1}}(1-\theta_k)\frac{f^{(k)}(z_0)}{k!}(z-z_0)^k\right\}$$. Here it is proved that this condition is necessary; more precisely, $\overline{\lim\limits_{\nu\to\infty}}\frac{m_{\nu+1}}{m_\nu}=\infty$ . This result is derived from certain properties of over-convergent power series.
@article{MZM_1971_10_1_a7,
author = {A. M. Lukatskii},
title = {Theorem concerning analytic continuation},
journal = {Matemati\v{c}eskie zametki},
pages = {57--62},
year = {1971},
volume = {10},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a7/}
}
A. M. Lukatskii. Theorem concerning analytic continuation. Matematičeskie zametki, Tome 10 (1971) no. 1, pp. 57-62. http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a7/