An~extremal property of outer functions
Matematičeskie zametki, Tome 10 (1971) no. 1, pp. 53-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

Our main result is the following: if $f(z)$ is in the space $H^2$, and $F(z)$ is its outer part, then $\|F^{(n)}\|_{H^2}\le\|f^{(n)}\|_{H^2}$ $(n=1,2,\dots)$, the left side being finite if the right side is finite. Under certain essential restrictions, this inequality was proved by B.I. Korenblyum and V.S. Korolevich [1].
@article{MZM_1971_10_1_a6,
     author = {B. I. Korenblum},
     title = {An~extremal property of outer functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {53--56},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a6/}
}
TY  - JOUR
AU  - B. I. Korenblum
TI  - An~extremal property of outer functions
JO  - Matematičeskie zametki
PY  - 1971
SP  - 53
EP  - 56
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a6/
LA  - ru
ID  - MZM_1971_10_1_a6
ER  - 
%0 Journal Article
%A B. I. Korenblum
%T An~extremal property of outer functions
%J Matematičeskie zametki
%D 1971
%P 53-56
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a6/
%G ru
%F MZM_1971_10_1_a6
B. I. Korenblum. An~extremal property of outer functions. Matematičeskie zametki, Tome 10 (1971) no. 1, pp. 53-56. http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a6/