Uniform-convergence factors for Fourier series of functions with a~given modulus of continuity
Matematičeskie zametki, Tome 10 (1971) no. 1, pp. 33-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a sequence of factors $\{\lambda_\nu\}$, which are Fourier–Stieitjes coefficients, converts the Fourier series of any function whose modulus of continuity does not exceed a given modulus of continuity $\omega(\delta)$ into a uniformly convergent series, if and only if $\omega(1/n)\int_o^{2\pi}\left|\lambda_0/2+\sum_{\nu=1}^n\lambda_\nu\cos\nu t\right|dt=o(1)$. The sufficiency of this condition is known.
@article{MZM_1971_10_1_a4,
     author = {S. A. Telyakovskii},
     title = {Uniform-convergence factors for {Fourier} series of functions with a~given modulus of continuity},
     journal = {Matemati\v{c}eskie zametki},
     pages = {33--40},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a4/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
TI  - Uniform-convergence factors for Fourier series of functions with a~given modulus of continuity
JO  - Matematičeskie zametki
PY  - 1971
SP  - 33
EP  - 40
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a4/
LA  - ru
ID  - MZM_1971_10_1_a4
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%T Uniform-convergence factors for Fourier series of functions with a~given modulus of continuity
%J Matematičeskie zametki
%D 1971
%P 33-40
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a4/
%G ru
%F MZM_1971_10_1_a4
S. A. Telyakovskii. Uniform-convergence factors for Fourier series of functions with a~given modulus of continuity. Matematičeskie zametki, Tome 10 (1971) no. 1, pp. 33-40. http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a4/