Imbedding in the class $e^L$
Matematičeskie zametki, Tome 10 (1971) no. 1, pp. 17-24
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions which must be satisfied by the modulus of continuity and smoothness of a function $f(x)\in L_p(0,2\pi)$ in order that $f(x)$ or $\widetilde f(x)$ belong to the class $e^L$ are obtained.
@article{MZM_1971_10_1_a2,
author = {\`E. A. Storozhenko},
title = {Imbedding in the class $e^L$},
journal = {Matemati\v{c}eskie zametki},
pages = {17--24},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a2/}
}
È. A. Storozhenko. Imbedding in the class $e^L$. Matematičeskie zametki, Tome 10 (1971) no. 1, pp. 17-24. http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a2/