Imbedding in the class $e^L$
Matematičeskie zametki, Tome 10 (1971) no. 1, pp. 17-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions which must be satisfied by the modulus of continuity and smoothness of a function $f(x)\in L_p(0,2\pi)$ in order that $f(x)$ or $\widetilde f(x)$ belong to the class $e^L$ are obtained.
@article{MZM_1971_10_1_a2,
     author = {\`E. A. Storozhenko},
     title = {Imbedding in the class $e^L$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {17--24},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a2/}
}
TY  - JOUR
AU  - È. A. Storozhenko
TI  - Imbedding in the class $e^L$
JO  - Matematičeskie zametki
PY  - 1971
SP  - 17
EP  - 24
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a2/
LA  - ru
ID  - MZM_1971_10_1_a2
ER  - 
%0 Journal Article
%A È. A. Storozhenko
%T Imbedding in the class $e^L$
%J Matematičeskie zametki
%D 1971
%P 17-24
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a2/
%G ru
%F MZM_1971_10_1_a2
È. A. Storozhenko. Imbedding in the class $e^L$. Matematičeskie zametki, Tome 10 (1971) no. 1, pp. 17-24. http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a2/