A condition for the asymptotic stability of a linear homogeneous system whose principal part is a Jordan matrix
Matematičeskie zametki, Tome 8 (1970) no. 6, pp. 761-772
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper presents an investigation of the asymptotic stability of a linear system of ordinary differential equations in which the principal part is a Jordan matrix with variable coefficients and the perturbation matrix can have an arbitrary structure.
@article{MZM_1970_8_6_a8,
author = {V. A. Voblyi},
title = {A condition for the asymptotic stability of a linear homogeneous system whose principal part is a {Jordan} matrix},
journal = {Matemati\v{c}eskie zametki},
pages = {761--772},
publisher = {mathdoc},
volume = {8},
number = {6},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_6_a8/}
}
TY - JOUR AU - V. A. Voblyi TI - A condition for the asymptotic stability of a linear homogeneous system whose principal part is a Jordan matrix JO - Matematičeskie zametki PY - 1970 SP - 761 EP - 772 VL - 8 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1970_8_6_a8/ LA - ru ID - MZM_1970_8_6_a8 ER -
V. A. Voblyi. A condition for the asymptotic stability of a linear homogeneous system whose principal part is a Jordan matrix. Matematičeskie zametki, Tome 8 (1970) no. 6, pp. 761-772. http://geodesic.mathdoc.fr/item/MZM_1970_8_6_a8/