The number of strongly connected directed graphs
Matematičeskie zametki, Tome 8 (1970) no. 6, pp. 721-732.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solutions of known problems in the enumeration of graphs are obtained. The number of graphs is expressed, by using a lemma proved by Burnside, in terms of the values of an auxiliary combinatorial function of the partitions of a number. These values, expressing the number of strongly connected graphs having a fixed automorphism of a given cyclic type, are determined by a system of linear recurrence relations.
@article{MZM_1970_8_6_a4,
     author = {V. A. Liskovets},
     title = {The number of strongly connected directed graphs},
     journal = {Matemati\v{c}eskie zametki},
     pages = {721--732},
     publisher = {mathdoc},
     volume = {8},
     number = {6},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_6_a4/}
}
TY  - JOUR
AU  - V. A. Liskovets
TI  - The number of strongly connected directed graphs
JO  - Matematičeskie zametki
PY  - 1970
SP  - 721
EP  - 732
VL  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_6_a4/
LA  - ru
ID  - MZM_1970_8_6_a4
ER  - 
%0 Journal Article
%A V. A. Liskovets
%T The number of strongly connected directed graphs
%J Matematičeskie zametki
%D 1970
%P 721-732
%V 8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_6_a4/
%G ru
%F MZM_1970_8_6_a4
V. A. Liskovets. The number of strongly connected directed graphs. Matematičeskie zametki, Tome 8 (1970) no. 6, pp. 721-732. http://geodesic.mathdoc.fr/item/MZM_1970_8_6_a4/