Decomposition of highest-weight representations of a semisimple Lie algebra into representations of regular subalgebras
Matematičeskie zametki, Tome 8 (1970) no. 6, pp. 703-710
Cet article a éte moissonné depuis la source Math-Net.Ru
A formula is derived for the decomposition of the highest-weight representation of a semisimple Lie algebra into irreducible representations of its regular subalgebra. In particular the case of finite-dimensional representations is investigated.
@article{MZM_1970_8_6_a2,
author = {A. U. Klimyk},
title = {Decomposition of highest-weight representations of a semisimple {Lie} algebra into representations of regular subalgebras},
journal = {Matemati\v{c}eskie zametki},
pages = {703--710},
year = {1970},
volume = {8},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_6_a2/}
}
TY - JOUR AU - A. U. Klimyk TI - Decomposition of highest-weight representations of a semisimple Lie algebra into representations of regular subalgebras JO - Matematičeskie zametki PY - 1970 SP - 703 EP - 710 VL - 8 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_1970_8_6_a2/ LA - ru ID - MZM_1970_8_6_a2 ER -
A. U. Klimyk. Decomposition of highest-weight representations of a semisimple Lie algebra into representations of regular subalgebras. Matematičeskie zametki, Tome 8 (1970) no. 6, pp. 703-710. http://geodesic.mathdoc.fr/item/MZM_1970_8_6_a2/