Lattice points in a circle whose distances from the center arein an arithmetic progression
Matematičeskie zametki, Tome 8 (1970) no. 6, pp. 787-798.

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic formula is derived for the number of integral points in a circle, the squares of whose distances from the center of the circle belong to an arithmetic progression.
@article{MZM_1970_8_6_a12,
     author = {P. D. Varbanets},
     title = {Lattice points in a circle whose distances from the center arein an arithmetic progression},
     journal = {Matemati\v{c}eskie zametki},
     pages = {787--798},
     publisher = {mathdoc},
     volume = {8},
     number = {6},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_6_a12/}
}
TY  - JOUR
AU  - P. D. Varbanets
TI  - Lattice points in a circle whose distances from the center arein an arithmetic progression
JO  - Matematičeskie zametki
PY  - 1970
SP  - 787
EP  - 798
VL  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_6_a12/
LA  - ru
ID  - MZM_1970_8_6_a12
ER  - 
%0 Journal Article
%A P. D. Varbanets
%T Lattice points in a circle whose distances from the center arein an arithmetic progression
%J Matematičeskie zametki
%D 1970
%P 787-798
%V 8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_6_a12/
%G ru
%F MZM_1970_8_6_a12
P. D. Varbanets. Lattice points in a circle whose distances from the center arein an arithmetic progression. Matematičeskie zametki, Tome 8 (1970) no. 6, pp. 787-798. http://geodesic.mathdoc.fr/item/MZM_1970_8_6_a12/