The construction, in explicit form, of an analog of Cauchy's kernel on Riemann surfaces of certain algebraic functions
Matematičeskie zametki, Tome 8 (1970) no. 6, pp. 693-701
Cet article a éte moissonné depuis la source Math-Net.Ru
An explicit expression, which under certain conditions can serve as an analog of Cauchy's kernel, is constructed for a Riemann surface determined by an algebraic equation.
@article{MZM_1970_8_6_a1,
author = {\'E. I. Zverovich},
title = {The construction, in explicit form, of an analog of {Cauchy's} kernel on {Riemann} surfaces of certain algebraic functions},
journal = {Matemati\v{c}eskie zametki},
pages = {693--701},
year = {1970},
volume = {8},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_6_a1/}
}
TY - JOUR AU - É. I. Zverovich TI - The construction, in explicit form, of an analog of Cauchy's kernel on Riemann surfaces of certain algebraic functions JO - Matematičeskie zametki PY - 1970 SP - 693 EP - 701 VL - 8 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_1970_8_6_a1/ LA - ru ID - MZM_1970_8_6_a1 ER -
É. I. Zverovich. The construction, in explicit form, of an analog of Cauchy's kernel on Riemann surfaces of certain algebraic functions. Matematičeskie zametki, Tome 8 (1970) no. 6, pp. 693-701. http://geodesic.mathdoc.fr/item/MZM_1970_8_6_a1/