Quasiconvex uniform-convergence factors for Fourier series of functions with a~given modulus of continuity
Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 619-623.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a quasiconvex sequencelambda $\{\lambda_\nu\}$ of convergence factors transforms Fourier series of functions whose moduli of continuity do not exceed a given modulus of continuity $\omega(\delta)$ into uniformly convergent series if and only iflambda $\lambda_n\omega(1/n)\log n\to0$. The sufficiency of this condition is already known.
@article{MZM_1970_8_5_a8,
     author = {S. A. Telyakovskii},
     title = {Quasiconvex uniform-convergence factors for {Fourier} series of functions with a~given modulus of continuity},
     journal = {Matemati\v{c}eskie zametki},
     pages = {619--623},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a8/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
TI  - Quasiconvex uniform-convergence factors for Fourier series of functions with a~given modulus of continuity
JO  - Matematičeskie zametki
PY  - 1970
SP  - 619
EP  - 623
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a8/
LA  - ru
ID  - MZM_1970_8_5_a8
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%T Quasiconvex uniform-convergence factors for Fourier series of functions with a~given modulus of continuity
%J Matematičeskie zametki
%D 1970
%P 619-623
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a8/
%G ru
%F MZM_1970_8_5_a8
S. A. Telyakovskii. Quasiconvex uniform-convergence factors for Fourier series of functions with a~given modulus of continuity. Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 619-623. http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a8/