Quasiconvex uniform-convergence factors for Fourier series of functions with a~given modulus of continuity
Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 619-623
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that a quasiconvex sequencelambda $\{\lambda_\nu\}$ of convergence factors transforms Fourier series of functions whose moduli of continuity do not exceed a given modulus of continuity $\omega(\delta)$ into uniformly convergent series if and only iflambda $\lambda_n\omega(1/n)\log n\to0$. The sufficiency of this condition is already known.
@article{MZM_1970_8_5_a8,
author = {S. A. Telyakovskii},
title = {Quasiconvex uniform-convergence factors for {Fourier} series of functions with a~given modulus of continuity},
journal = {Matemati\v{c}eskie zametki},
pages = {619--623},
publisher = {mathdoc},
volume = {8},
number = {5},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a8/}
}
TY - JOUR AU - S. A. Telyakovskii TI - Quasiconvex uniform-convergence factors for Fourier series of functions with a~given modulus of continuity JO - Matematičeskie zametki PY - 1970 SP - 619 EP - 623 VL - 8 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a8/ LA - ru ID - MZM_1970_8_5_a8 ER -
S. A. Telyakovskii. Quasiconvex uniform-convergence factors for Fourier series of functions with a~given modulus of continuity. Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 619-623. http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a8/