Convergence of Riemann sums for functions which can be represented by trigonometric series with coefficients forming a~monotonic sequence
Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 607-618
Voir la notice de l'article provenant de la source Math-Net.Ru
The following theorem is proved. If
$$
f(x)=\frac{a_0}2\sum_{k=1}^\infty a_k\cos2\pi kx+b_k\sin2\pi kx
$$
where $a_k\downarrow0$ and $b_k\downarrow0$, then
$$
\lim_{n\to\infty}\frac1n\sum_{s=0}^{n-1}f\left(x+\frac sn\right)=\frac{a_0}2
$$
on $(0,1)$ in the sense of convergence in measure. If in addition $f(x)\in L^2(0,1)$, then this relation holds for almost all $x$.
@article{MZM_1970_8_5_a7,
author = {B. V. Pannikov},
title = {Convergence of {Riemann} sums for functions which can be represented by trigonometric series with coefficients forming a~monotonic sequence},
journal = {Matemati\v{c}eskie zametki},
pages = {607--618},
publisher = {mathdoc},
volume = {8},
number = {5},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a7/}
}
TY - JOUR AU - B. V. Pannikov TI - Convergence of Riemann sums for functions which can be represented by trigonometric series with coefficients forming a~monotonic sequence JO - Matematičeskie zametki PY - 1970 SP - 607 EP - 618 VL - 8 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a7/ LA - ru ID - MZM_1970_8_5_a7 ER -
%0 Journal Article %A B. V. Pannikov %T Convergence of Riemann sums for functions which can be represented by trigonometric series with coefficients forming a~monotonic sequence %J Matematičeskie zametki %D 1970 %P 607-618 %V 8 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a7/ %G ru %F MZM_1970_8_5_a7
B. V. Pannikov. Convergence of Riemann sums for functions which can be represented by trigonometric series with coefficients forming a~monotonic sequence. Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 607-618. http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a7/