The existence of a~best approximating element in $(F)$-space with integral metric
Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 583-594
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence is proved of a best approximation element in finite-dimensional subspaces of linear metric spaces of a class containing, in particular, the space $S[0,1]$ of measurable functions.
@article{MZM_1970_8_5_a5,
author = {A. L. Garkavi},
title = {The existence of a~best approximating element in $(F)$-space with integral metric},
journal = {Matemati\v{c}eskie zametki},
pages = {583--594},
publisher = {mathdoc},
volume = {8},
number = {5},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a5/}
}
A. L. Garkavi. The existence of a~best approximating element in $(F)$-space with integral metric. Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 583-594. http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a5/