The existence of a~best approximating element in $(F)$-space with integral metric
Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 583-594.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence is proved of a best approximation element in finite-dimensional subspaces of linear metric spaces of a class containing, in particular, the space $S[0,1]$ of measurable functions.
@article{MZM_1970_8_5_a5,
     author = {A. L. Garkavi},
     title = {The existence of a~best approximating element in $(F)$-space with integral metric},
     journal = {Matemati\v{c}eskie zametki},
     pages = {583--594},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a5/}
}
TY  - JOUR
AU  - A. L. Garkavi
TI  - The existence of a~best approximating element in $(F)$-space with integral metric
JO  - Matematičeskie zametki
PY  - 1970
SP  - 583
EP  - 594
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a5/
LA  - ru
ID  - MZM_1970_8_5_a5
ER  - 
%0 Journal Article
%A A. L. Garkavi
%T The existence of a~best approximating element in $(F)$-space with integral metric
%J Matematičeskie zametki
%D 1970
%P 583-594
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a5/
%G ru
%F MZM_1970_8_5_a5
A. L. Garkavi. The existence of a~best approximating element in $(F)$-space with integral metric. Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 583-594. http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a5/