The order of approximation by partial sums of lacunary series in Banach spaces
Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 575-582.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are determined which must be imposed on an $n_k$ lacunary sequence and a $(C,1)$-basis in Banach. space in order that the analog of the theorem concerning best approximation by partial sums of lacunary trigonometrical series should hold.
@article{MZM_1970_8_5_a4,
     author = {V. F. Gaposhkin},
     title = {The order of approximation by partial sums of lacunary series in {Banach} spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {575--582},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a4/}
}
TY  - JOUR
AU  - V. F. Gaposhkin
TI  - The order of approximation by partial sums of lacunary series in Banach spaces
JO  - Matematičeskie zametki
PY  - 1970
SP  - 575
EP  - 582
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a4/
LA  - ru
ID  - MZM_1970_8_5_a4
ER  - 
%0 Journal Article
%A V. F. Gaposhkin
%T The order of approximation by partial sums of lacunary series in Banach spaces
%J Matematičeskie zametki
%D 1970
%P 575-582
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a4/
%G ru
%F MZM_1970_8_5_a4
V. F. Gaposhkin. The order of approximation by partial sums of lacunary series in Banach spaces. Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 575-582. http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a4/