The order of approximation by partial sums of lacunary series in Banach spaces
Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 575-582
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions are determined which must be imposed on an $n_k$ lacunary sequence and a $(C,1)$-basis in Banach. space in order that the analog of the theorem concerning best approximation by partial sums of lacunary trigonometrical series should hold.
@article{MZM_1970_8_5_a4,
author = {V. F. Gaposhkin},
title = {The order of approximation by partial sums of lacunary series in {Banach} spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {575--582},
publisher = {mathdoc},
volume = {8},
number = {5},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a4/}
}
V. F. Gaposhkin. The order of approximation by partial sums of lacunary series in Banach spaces. Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 575-582. http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a4/