Convergent sequences of linear operators in semiordered spaces
Matematičeskie zametki, Tome 8 (1970) no. 4, pp. 475-486
Voir la notice de l'article provenant de la source Math-Net.Ru
The definition given by P. P. Korovkin of operators of the class $S_m$ and conditions for the convergence of these operators to the identity operator are extended to apply to regular operators from a $K$-space $R_0$ with a unit, into a $K$-space $R_1$, where $R_0$ and $R_1$ are normally contained in the union of the spaces $S[a,b]$ and $s$.
@article{MZM_1970_8_4_a6,
author = {R. K. Vasil'ev},
title = {Convergent sequences of linear operators in semiordered spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {475--486},
publisher = {mathdoc},
volume = {8},
number = {4},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_4_a6/}
}
R. K. Vasil'ev. Convergent sequences of linear operators in semiordered spaces. Matematičeskie zametki, Tome 8 (1970) no. 4, pp. 475-486. http://geodesic.mathdoc.fr/item/MZM_1970_8_4_a6/