Convergent sequences of linear operators in semiordered spaces
Matematičeskie zametki, Tome 8 (1970) no. 4, pp. 475-486.

Voir la notice de l'article provenant de la source Math-Net.Ru

The definition given by P. P. Korovkin of operators of the class $S_m$ and conditions for the convergence of these operators to the identity operator are extended to apply to regular operators from a $K$-space $R_0$ with a unit, into a $K$-space $R_1$, where $R_0$ and $R_1$ are normally contained in the union of the spaces $S[a,b]$ and $s$.
@article{MZM_1970_8_4_a6,
     author = {R. K. Vasil'ev},
     title = {Convergent sequences of linear operators in semiordered spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {475--486},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_4_a6/}
}
TY  - JOUR
AU  - R. K. Vasil'ev
TI  - Convergent sequences of linear operators in semiordered spaces
JO  - Matematičeskie zametki
PY  - 1970
SP  - 475
EP  - 486
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_4_a6/
LA  - ru
ID  - MZM_1970_8_4_a6
ER  - 
%0 Journal Article
%A R. K. Vasil'ev
%T Convergent sequences of linear operators in semiordered spaces
%J Matematičeskie zametki
%D 1970
%P 475-486
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_4_a6/
%G ru
%F MZM_1970_8_4_a6
R. K. Vasil'ev. Convergent sequences of linear operators in semiordered spaces. Matematičeskie zametki, Tome 8 (1970) no. 4, pp. 475-486. http://geodesic.mathdoc.fr/item/MZM_1970_8_4_a6/