Linear extensions of dynamic systems and the reducibility problem
Matematičeskie zametki, Tome 8 (1970) no. 4, pp. 451-462
Voir la notice de l'article provenant de la source Math-Net.Ru
The relation of linear extensions of smooth dynamic systems to cohomologies and to reducibility in the case of flow is investigated. A result is obtained concerning $\Gamma$-cohomologies in the neighborhood of a constant cocycle for the case of an arbitrary closed subgroup $\Gamma$ of the group $GL(k, C)$.
@article{MZM_1970_8_4_a4,
author = {S. B. Katok},
title = {Linear extensions of dynamic systems and the reducibility problem},
journal = {Matemati\v{c}eskie zametki},
pages = {451--462},
publisher = {mathdoc},
volume = {8},
number = {4},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_4_a4/}
}
S. B. Katok. Linear extensions of dynamic systems and the reducibility problem. Matematičeskie zametki, Tome 8 (1970) no. 4, pp. 451-462. http://geodesic.mathdoc.fr/item/MZM_1970_8_4_a4/