Intersection of plane boundaries of a polytope with acute angles
Matematičeskie zametki, Tome 8 (1970) no. 4, pp. 521-527
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the planes of nonadjacent faces of a polytope with angles not exceeding $90^\circ$ cannot intersect. It is also proved that the dimension of the intersection of any set of hyperplanes is equal to the maximum dimension of a boundary lying in this intersection.
@article{MZM_1970_8_4_a11,
author = {E. M. Andreev},
title = {Intersection of plane boundaries of a polytope with acute angles},
journal = {Matemati\v{c}eskie zametki},
pages = {521--527},
publisher = {mathdoc},
volume = {8},
number = {4},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_4_a11/}
}
E. M. Andreev. Intersection of plane boundaries of a polytope with acute angles. Matematičeskie zametki, Tome 8 (1970) no. 4, pp. 521-527. http://geodesic.mathdoc.fr/item/MZM_1970_8_4_a11/