Effective bounds for the number of solutions of certain diophantine equations
Matematičeskie zametki, Tome 8 (1970) no. 3, pp. 361-371.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the number of solutions of the diophantine equation $$ \mathrm{Norm}\,(z_1\omega_1+\dots+z_m\omega_m)=f(z_1,\dots,z_m), $$ is finite, where $\omega_1,\dots,\omega_m$ are algebraic numbers of a special type, the left side of the equation is the norm with respect to a quadratic field, and $f$ is a low-degree polynomial.
@article{MZM_1970_8_3_a8,
     author = {N. I. Fel'dman},
     title = {Effective bounds for the number of solutions of certain diophantine equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {361--371},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a8/}
}
TY  - JOUR
AU  - N. I. Fel'dman
TI  - Effective bounds for the number of solutions of certain diophantine equations
JO  - Matematičeskie zametki
PY  - 1970
SP  - 361
EP  - 371
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a8/
LA  - ru
ID  - MZM_1970_8_3_a8
ER  - 
%0 Journal Article
%A N. I. Fel'dman
%T Effective bounds for the number of solutions of certain diophantine equations
%J Matematičeskie zametki
%D 1970
%P 361-371
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a8/
%G ru
%F MZM_1970_8_3_a8
N. I. Fel'dman. Effective bounds for the number of solutions of certain diophantine equations. Matematičeskie zametki, Tome 8 (1970) no. 3, pp. 361-371. http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a8/