Effective bounds for the number of solutions of certain diophantine equations
Matematičeskie zametki, Tome 8 (1970) no. 3, pp. 361-371
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the number of solutions of the diophantine equation
$$
\mathrm{Norm}\,(z_1\omega_1+\dots+z_m\omega_m)=f(z_1,\dots,z_m),
$$
is finite, where $\omega_1,\dots,\omega_m$ are algebraic numbers of a special type,
the left side of the equation is the norm with respect to a quadratic field,
and $f$ is a low-degree polynomial.
@article{MZM_1970_8_3_a8,
author = {N. I. Fel'dman},
title = {Effective bounds for the number of solutions of certain diophantine equations},
journal = {Matemati\v{c}eskie zametki},
pages = {361--371},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a8/}
}
N. I. Fel'dman. Effective bounds for the number of solutions of certain diophantine equations. Matematičeskie zametki, Tome 8 (1970) no. 3, pp. 361-371. http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a8/