Influence of geometric properties of space on the convergence of Cauchy's method in the best-approximation problem
Matematičeskie zametki, Tome 8 (1970) no. 3, pp. 329-338
Voir la notice de l'article provenant de la source Math-Net.Ru
The reciprocity of certain geometrical properties of finite-dimensional Banach space is established. The role of these properties in the construction of best-approximation elements by Cauchy's method is investigated.
@article{MZM_1970_8_3_a5,
author = {V. I. Berdyshev},
title = {Influence of geometric properties of space on the convergence of {Cauchy's} method in the best-approximation problem},
journal = {Matemati\v{c}eskie zametki},
pages = {329--338},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a5/}
}
TY - JOUR AU - V. I. Berdyshev TI - Influence of geometric properties of space on the convergence of Cauchy's method in the best-approximation problem JO - Matematičeskie zametki PY - 1970 SP - 329 EP - 338 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a5/ LA - ru ID - MZM_1970_8_3_a5 ER -
V. I. Berdyshev. Influence of geometric properties of space on the convergence of Cauchy's method in the best-approximation problem. Matematičeskie zametki, Tome 8 (1970) no. 3, pp. 329-338. http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a5/