Homogeneous regions on the conformal sphere
Matematičeskie zametki, Tome 8 (1970) no. 3, pp. 321-328
Cet article a éte moissonné depuis la source Math-Net.Ru
All regions on a sphere which are similar with respect to a group of conformal transformations of this sphere are determined. Such regions are: the whole sphere, a hemisphere, the complement of a sphere of lower dimension, and the complement of a point.
@article{MZM_1970_8_3_a4,
author = {B. N. Kimel'fel'd},
title = {Homogeneous regions on the conformal sphere},
journal = {Matemati\v{c}eskie zametki},
pages = {321--328},
year = {1970},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a4/}
}
B. N. Kimel'fel'd. Homogeneous regions on the conformal sphere. Matematičeskie zametki, Tome 8 (1970) no. 3, pp. 321-328. http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a4/