Homogeneous regions on the conformal sphere
Matematičeskie zametki, Tome 8 (1970) no. 3, pp. 321-328.

Voir la notice de l'article provenant de la source Math-Net.Ru

All regions on a sphere which are similar with respect to a group of conformal transformations of this sphere are determined. Such regions are: the whole sphere, a hemisphere, the complement of a sphere of lower dimension, and the complement of a point.
@article{MZM_1970_8_3_a4,
     author = {B. N. Kimel'fel'd},
     title = {Homogeneous regions on the conformal sphere},
     journal = {Matemati\v{c}eskie zametki},
     pages = {321--328},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a4/}
}
TY  - JOUR
AU  - B. N. Kimel'fel'd
TI  - Homogeneous regions on the conformal sphere
JO  - Matematičeskie zametki
PY  - 1970
SP  - 321
EP  - 328
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a4/
LA  - ru
ID  - MZM_1970_8_3_a4
ER  - 
%0 Journal Article
%A B. N. Kimel'fel'd
%T Homogeneous regions on the conformal sphere
%J Matematičeskie zametki
%D 1970
%P 321-328
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a4/
%G ru
%F MZM_1970_8_3_a4
B. N. Kimel'fel'd. Homogeneous regions on the conformal sphere. Matematičeskie zametki, Tome 8 (1970) no. 3, pp. 321-328. http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a4/