An inverse problem for periodic Jacobi matrices
Matematičeskie zametki, Tome 8 (1970) no. 3, pp. 297-307
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of determining a matrix from its spectrum is solved for infinite periodic Jacobi matrices in the case in which the spectrum consists of $n-1$ characteristic values and $n$ intervals on the real axis.
@article{MZM_1970_8_3_a2,
author = {I. V. Stankevich},
title = {An inverse problem for periodic {Jacobi} matrices},
journal = {Matemati\v{c}eskie zametki},
pages = {297--307},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a2/}
}
I. V. Stankevich. An inverse problem for periodic Jacobi matrices. Matematičeskie zametki, Tome 8 (1970) no. 3, pp. 297-307. http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a2/