Properties of solutions of certain two-dimensional nonlinear systems of ordinary differential equations on and outside a stable manifold
Matematičeskie zametki, Tome 8 (1970) no. 3, pp. 285-295.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some two-dimensional nonlinear systems with an irregular singularity at infinity are investigated. Properties of their solutions on and outside a one-dimensional stable manifold are studied. Representations for solutions on the manifold are derived in the form of one-parameter exponential series. It is shown how solutions not tending to zero at infinity deviate from the stable manifold.
@article{MZM_1970_8_3_a1,
     author = {N. B. Konyukhova},
     title = {Properties of solutions of certain two-dimensional nonlinear systems of ordinary differential equations on and outside a stable manifold},
     journal = {Matemati\v{c}eskie zametki},
     pages = {285--295},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a1/}
}
TY  - JOUR
AU  - N. B. Konyukhova
TI  - Properties of solutions of certain two-dimensional nonlinear systems of ordinary differential equations on and outside a stable manifold
JO  - Matematičeskie zametki
PY  - 1970
SP  - 285
EP  - 295
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a1/
LA  - ru
ID  - MZM_1970_8_3_a1
ER  - 
%0 Journal Article
%A N. B. Konyukhova
%T Properties of solutions of certain two-dimensional nonlinear systems of ordinary differential equations on and outside a stable manifold
%J Matematičeskie zametki
%D 1970
%P 285-295
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a1/
%G ru
%F MZM_1970_8_3_a1
N. B. Konyukhova. Properties of solutions of certain two-dimensional nonlinear systems of ordinary differential equations on and outside a stable manifold. Matematičeskie zametki, Tome 8 (1970) no. 3, pp. 285-295. http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a1/