Scattering at a strongly singular potential
Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 217-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

Hilbert's equation for the resolvent and the maximum principle for the equation $-\Delta u+V(x)u=0$ is used to construct a self-adjoint extension of the operator $-\Delta+V(x)$ with a positive singular potential $V(x)$. The properties of this operator are investigated.
@article{MZM_1970_8_2_a9,
     author = {V. V. Kucherenko},
     title = {Scattering at a strongly singular potential},
     journal = {Matemati\v{c}eskie zametki},
     pages = {217--228},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a9/}
}
TY  - JOUR
AU  - V. V. Kucherenko
TI  - Scattering at a strongly singular potential
JO  - Matematičeskie zametki
PY  - 1970
SP  - 217
EP  - 228
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a9/
LA  - ru
ID  - MZM_1970_8_2_a9
ER  - 
%0 Journal Article
%A V. V. Kucherenko
%T Scattering at a strongly singular potential
%J Matematičeskie zametki
%D 1970
%P 217-228
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a9/
%G ru
%F MZM_1970_8_2_a9
V. V. Kucherenko. Scattering at a strongly singular potential. Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 217-228. http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a9/