Regular and singular Hermitian operators
Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 197-203
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be a closed Hermitian operator, let $\mathfrak{H}'$ be the orthogonal complement of the domain of definition of $A$, and let $\mathfrak{R}_\lambda$ be the defect subspace. An operator $A$ is called regular if the orthogonal projection of $\mathfrak{H}'$ on $\mathfrak{R}_\lambda$ is closed. Criteria for regularity are established.
@article{MZM_1970_8_2_a7,
author = {Yu. L. Shmul'yan},
title = {Regular and singular {Hermitian} operators},
journal = {Matemati\v{c}eskie zametki},
pages = {197--203},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a7/}
}
Yu. L. Shmul'yan. Regular and singular Hermitian operators. Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 197-203. http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a7/