Regular and singular Hermitian operators
Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 197-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a closed Hermitian operator, let $\mathfrak{H}'$ be the orthogonal complement of the domain of definition of $A$, and let $\mathfrak{R}_\lambda$ be the defect subspace. An operator $A$ is called regular if the orthogonal projection of $\mathfrak{H}'$ on $\mathfrak{R}_\lambda$ is closed. Criteria for regularity are established.
@article{MZM_1970_8_2_a7,
     author = {Yu. L. Shmul'yan},
     title = {Regular and singular {Hermitian} operators},
     journal = {Matemati\v{c}eskie zametki},
     pages = {197--203},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a7/}
}
TY  - JOUR
AU  - Yu. L. Shmul'yan
TI  - Regular and singular Hermitian operators
JO  - Matematičeskie zametki
PY  - 1970
SP  - 197
EP  - 203
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a7/
LA  - ru
ID  - MZM_1970_8_2_a7
ER  - 
%0 Journal Article
%A Yu. L. Shmul'yan
%T Regular and singular Hermitian operators
%J Matematičeskie zametki
%D 1970
%P 197-203
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a7/
%G ru
%F MZM_1970_8_2_a7
Yu. L. Shmul'yan. Regular and singular Hermitian operators. Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 197-203. http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a7/