The existence of a solution of a linear integral equation
Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 181-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem is proved concerning the existence of a solution of a linear integral equation in generalized Lebesgue space $L_p(\Delta_n)$, $p=(p_1,\dots,p_n)$, where $\Delta_n$ is an $n$-dimensional parallelepiped.
@article{MZM_1970_8_2_a5,
     author = {Ya. S. Bugrov},
     title = {The existence of a solution of a linear integral equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {181--185},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a5/}
}
TY  - JOUR
AU  - Ya. S. Bugrov
TI  - The existence of a solution of a linear integral equation
JO  - Matematičeskie zametki
PY  - 1970
SP  - 181
EP  - 185
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a5/
LA  - ru
ID  - MZM_1970_8_2_a5
ER  - 
%0 Journal Article
%A Ya. S. Bugrov
%T The existence of a solution of a linear integral equation
%J Matematičeskie zametki
%D 1970
%P 181-185
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a5/
%G ru
%F MZM_1970_8_2_a5
Ya. S. Bugrov. The existence of a solution of a linear integral equation. Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 181-185. http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a5/