Uniqueness of the solution of Christoffel's problem for nonclosed surfaces
Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 251-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions satisfied by a region of a sphere are found under which the differential equation arising in the solution of Christoffel's problem has not more than one solution in the region taking given boundary values.
@article{MZM_1970_8_2_a13,
     author = {Yu. A. Volkov and V. I. Oliker},
     title = {Uniqueness of the solution of {Christoffel's} problem for nonclosed surfaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {251--257},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a13/}
}
TY  - JOUR
AU  - Yu. A. Volkov
AU  - V. I. Oliker
TI  - Uniqueness of the solution of Christoffel's problem for nonclosed surfaces
JO  - Matematičeskie zametki
PY  - 1970
SP  - 251
EP  - 257
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a13/
LA  - ru
ID  - MZM_1970_8_2_a13
ER  - 
%0 Journal Article
%A Yu. A. Volkov
%A V. I. Oliker
%T Uniqueness of the solution of Christoffel's problem for nonclosed surfaces
%J Matematičeskie zametki
%D 1970
%P 251-257
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a13/
%G ru
%F MZM_1970_8_2_a13
Yu. A. Volkov; V. I. Oliker. Uniqueness of the solution of Christoffel's problem for nonclosed surfaces. Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 251-257. http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a13/