Uniqueness of the solution of Christoffel's problem for nonclosed surfaces
Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 251-257
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions satisfied by a region of a sphere are found under which the differential equation arising in the solution of Christoffel's problem has not more than one solution in the region taking given boundary values.
@article{MZM_1970_8_2_a13,
author = {Yu. A. Volkov and V. I. Oliker},
title = {Uniqueness of the solution of {Christoffel's} problem for nonclosed surfaces},
journal = {Matemati\v{c}eskie zametki},
pages = {251--257},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a13/}
}
Yu. A. Volkov; V. I. Oliker. Uniqueness of the solution of Christoffel's problem for nonclosed surfaces. Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 251-257. http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a13/