Convergence of orthogonal series to $+\infty$
Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 129-136
Voir la notice de l'article provenant de la source Math-Net.Ru
For any sequence $\{b_n\}$ such that $\sum_{n=1}^\infty b_n^2=\infty$, a uniformly bounded system $\{\Phi_n(x)\}$, orthonormal on $[0, 1]$, is constructed such that the series $\sum_{n=1}^\infty b_n\Phi_n(x)$ diverges to $+\infty$ on some set $E\subset[0, 1]$, $0\mathrm{mes}\, E1$, for any order of the terms.
@article{MZM_1970_8_2_a0,
author = {R. I. Ovsepyan and A. A. Talalyan},
title = {Convergence of orthogonal series to $+\infty$},
journal = {Matemati\v{c}eskie zametki},
pages = {129--136},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a0/}
}
R. I. Ovsepyan; A. A. Talalyan. Convergence of orthogonal series to $+\infty$. Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 129-136. http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a0/