Convergence of orthogonal series to $+\infty$
Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 129-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any sequence $\{b_n\}$ such that $\sum_{n=1}^\infty b_n^2=\infty$, a uniformly bounded system $\{\Phi_n(x)\}$, orthonormal on $[0, 1]$, is constructed such that the series $\sum_{n=1}^\infty b_n\Phi_n(x)$ diverges to $+\infty$ on some set $E\subset[0, 1]$, $0\mathrm{mes}\, E1$, for any order of the terms.
@article{MZM_1970_8_2_a0,
     author = {R. I. Ovsepyan and A. A. Talalyan},
     title = {Convergence of orthogonal series to $+\infty$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {129--136},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a0/}
}
TY  - JOUR
AU  - R. I. Ovsepyan
AU  - A. A. Talalyan
TI  - Convergence of orthogonal series to $+\infty$
JO  - Matematičeskie zametki
PY  - 1970
SP  - 129
EP  - 136
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a0/
LA  - ru
ID  - MZM_1970_8_2_a0
ER  - 
%0 Journal Article
%A R. I. Ovsepyan
%A A. A. Talalyan
%T Convergence of orthogonal series to $+\infty$
%J Matematičeskie zametki
%D 1970
%P 129-136
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a0/
%G ru
%F MZM_1970_8_2_a0
R. I. Ovsepyan; A. A. Talalyan. Convergence of orthogonal series to $+\infty$. Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 129-136. http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a0/