Characterization of the simple groups $PSL(2,2^n)$ and $Sz(q)$ by biprimary subgroups
Matematičeskie zametki, Tome 8 (1970) no. 1, pp. 85-93
Voir la notice de l'article provenant de la source Math-Net.Ru
A property of the groups $PSL(2,2^n)$ and $Sz(q)$ is derived which no other finite simple group possesses. This property restricts the structure of biprimary subgroups of the group. A description is given of all finite nonsolvable groups with this property.
@article{MZM_1970_8_1_a9,
author = {V. A. Belonogov},
title = {Characterization of the simple groups $PSL(2,2^n)$ and $Sz(q)$ by biprimary subgroups},
journal = {Matemati\v{c}eskie zametki},
pages = {85--93},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_1_a9/}
}
V. A. Belonogov. Characterization of the simple groups $PSL(2,2^n)$ and $Sz(q)$ by biprimary subgroups. Matematičeskie zametki, Tome 8 (1970) no. 1, pp. 85-93. http://geodesic.mathdoc.fr/item/MZM_1970_8_1_a9/